LIMIT STATE OF COLLAPSE IN SHEAR -

 - The shear stress develops in beam due to longitudinal-             transverse displacement.

 Shear stress distributions 

(a) Ultimate stage - 
doubly reinforced concrete


singly reinforced beam 

 (b) Elastic stage - 





 shear in RC beam resisted by following sections - 

 1. Dowel action of main steel
 2. Aggregate interlocking  
 3. Uncracked sections             

  Critical section for shear - 

(a) When supports are in Compression - 
 -    In this case , critical section occurs at 'd' distance from              face of support.


Supports in compression

  (b) When supports are in tension then critical section                      occurs at face of support.



supports are in tension
  Nominal shear stress  - 

            τ = Vu/bd

 - If depth is varrying -

              τ = (Vu +,- M/d • tanβ) / bd

     τ = Nominal shear stress , Vu = Shear force,
      b= width , d = depth , M= Bending moment
      β = angle between upper and lower fibre in beam.
      +ve = when moment decrease with depth
     -ve = when moment increase with depth

     Maximum shear stress  - 

-            τcmax = 0.62fck  
- when τ > τcmax  then " Diagonal Compression failure" occurs.  


  Design shear stress   - 
  
- Design shear stress (τc) is determined based on grade of                  concrete and percentage of steel. with help of IS 456-2000 code.

 (a) If τ < τc/2 - No shear reinforcement provides.
 (b) If τc/2 < τ < τc = Minimum shear reinforcement                    provides - 
                        
                    Sv = (0.87fy• Asv) / 0.4b
(c) If τ-τc < 0.4 , then minimum reinforcement provides.
(d) If τ>τc , then design of stirrups - 
      
        - For vertical stirrups - 
     
                         Sv =  0.87fy•Asv •d / Vs    
   ,
                    Sv max. = 0.75d or, 300mm whichever is                                                      minimum
- For Inclind stirrups - 

            S 0.87fy•Asv •d( cosα + sinα )Vs 
  -  Maximum spacing is " d " 

           Sv = spacing
           d = effective depth
          fy = yield stress of steel
           α = inclination of stirrups , should not be less than 45°
          Asv = Area of stirrups
          Vs = shear in steel , Vs = (τ-τc)•bd 
          
 Note - 
    in case of RC beam , when- 
      Shear stress < 5kg/cm2 = No shear reinforcement provides
      Shear stress = 5 - 20Kg/cm2 = minimum shear                                                                                   reinforcement provides.
       Shear stress >5kg/cm2 , then Dimension of beam need to                                                          be changed.































Comments

Popular posts from this blog

Design of RCC cantilever beam

Manufacturing process of brick